If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+3t-30=0
a = 1; b = 3; c = -30;
Δ = b2-4ac
Δ = 32-4·1·(-30)
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{129}}{2*1}=\frac{-3-\sqrt{129}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{129}}{2*1}=\frac{-3+\sqrt{129}}{2} $
| 1/6-a/2=-2a/3+1/4 | | 1/6-a/2=-2a/3+1/4* | | 3/8z=-2+2/3z-1/24 | | 7y+30=10y | | 4*1/6z=-2+5*2/3z | | 0,20y+24=y, | | 40x=66 | | 41/6z=-2+52/3z | | 0,3x=99 | | h6=9-4h/3 | | 1,4x=868 | | y/2+1=y/5+1/4 | | 0,6x=168 | | 26+2x=78 | | 12=18+1,2x | | 5a/4-7a/8=5a/6-5.5 | | 3.x-2=x+2 | | 2.x+1=x+5 | | 5.x-3=15 | | 3.x-1=9 | | 2.x+1=10 | | 1431=25.25x+150 | | 4x-(-9)=11 | | 0.5=1.12^x | | 0,3-25=5+0,1x | | 6m+-7=-7 | | q/26=9.5 | | 195=z-2.05 | | -5x+-6=19 | | x-10/5=-9 | | 4x-16=O | | 10+5x*4=60 |